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Intrinsic fluorescence spectroscopy, in conjunction with partial least squares regression
(PLSR), was investigated as a potential technique for online quality control and quantitative
monitoring of Immunoglobulin G (IgG) aggregation that occurs following exposure to condi-
tions that emulate those that can occur during protein downstream processing. Initially, the
impact of three stress factors (temperature, pH, and protein concentration) on the degree of
aggregation determined using size exclusion chromatography data, was investigated by per-
forming a central composite designexperiment and applying a fitting response surface model.
This investigation identified the influence of the factors as well as the operating regions with
minimum propensity to induce protein aggregation. Spectral changes pertinent to the
stressed samples were also investigated and found to corroborate the high sensitivity of the
intrinsic fluorescence to conformational changes of the proteins under study. Ultimately, par-
tial least squares regression was implemented to formulate two fluorescence-based soft sen-
sors for quality control—product classification—and quantitative monitoring—concentration
of monomer. The resulting regression models exhibited accurate prediction ability and good
potential for in situ monitoring of monoclonal antibody downstream purification processes.
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Introduction

Monoclonal antibodies (MAbs) are the dominant products
in the biologics market1 with the immunoglobulin Gs (IgGs)
outpacing other bioproducts.2 Hydrophobic recombinant pro-
teins (e.g., IgGs) are inherently susceptible to aggregation2,3

during downstream processing following exposure to stress

factors such as pH, temperature, and agitation.4,5 Protein
aggregation is considered as the most common hindrance for
process development6 with such adverse effects as loss of
efficacy and/or provoking an immunogenic response.4,5,7,8

These issues are fueling the development of in situ techni-
ques that enable real-time accurate quality and quantity con-
trol of protein aggregation.

Conventional techniques for monitoring protein aggregation
are comparatively time consuming, while intrinsic fluores-
cence spectroscopy is a fast, noninvasive, and nondestructive
technique with high sensitivity and signal to noise ratio, which
is amenable to online monitoring.7,9–11 Fluorescence spectros-
copy has been identified as a plausible technique for monitor-
ing conformational changes and characterization of protein

tertiary structure.5,9,12

Three intrinsically fluorescent aromatic amino acids (phe-
nylalanine, tyrosine, and tryptophan), in the protein chain,
have been found to be sensitive to the micro-environment
they are exposed to. During protein disruption and aggregate

formation, the surrounding environment of the fluorophores
change. Accordingly, changes in their fluorescence behavior
can be exploited to draw inferences on conformational
changes as well as native and non-native characteristics of
the protein structure.5,10,12 The higher quantum yield and
extinction coefficient of tryptophan makes it a desirable
probe to track protein aggregation.9,13 The emission maxima
and intensity of the tryptophan shift is sensitive to its envi-
ronment. This shift indicates whether tryptophan is exposed
to the surrounding solvent or buried within the protein.9,13

Multiwavelength intrinsic fluorescence has previously been
investigated for use as a soft sensor for monitoring a-
lactoglobulin and b-lactoglobulin solubility under stressed
conditions10,14 and for discriminating between different types
of cheeses.15 Kumar et al. (2005) demonstrated the suitabil-
ity of second-derivative fluorescence spectra of tryptophan to
identify subtle structural changes in b-lactoglobulin and
interferon alpha-2a upon exposure to various solvent condi-
tions. Second-derivative fluorescence has also been imple-
mented to qualitatively assess MAb conformational changes
under thermal, pH, and solvent stressed conditions.9 How-
ever, the utilization of intrinsic multi-wavelength fluores-
cence spectroscopy in the development of a soft sensor for
both qualitative and quantitative monitoring of MAb aggre-
gation has not been explored.

The implementation of chemometric methods has been
explored in the context of fluorescence-based soft sensor
development.11,16,17 Partial least squares regression (PLSR),
one of the most commonly used data exploratory techniques,18
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was utilized to draw indirect inferences from the fluorescence
spectra to generate predictive models for monitoring
aggregation.

The objective of this study was to develop soft sensors
based on intrinsic fluorescence, coupled with PLSR, for at-
line quality control—classification of product—and also for
quantitative monitoring—prediction of monomer concentra-
tion—at different stages of a downstream purification process.
For simplicity and to have better control of experimental con-
ditions, the measurements were collected by exposing the
samples to operating conditions analogous to those that occur
during protein purification. Given the diverse aggregation pat-
terns induced by various stress factors imposed along down-
stream processes, IgG samples of different concentrations
were subjected to different temperature and pH conditions.
Temperature and pH changes are commonly used to achieve
separation of proteins.19 A response surface method (RSM)
was formulated to describe the aggregation patterns induced
by different stress factors. RSM was performed to better com-
prehend the effect and interaction of the stress factors as well
as to determine the regions with minimum propensity to cause
aggregation. Additional experiments were also conducted to
produce a more diverse data set for soft sensor development.
High-pressure size exclusion chromatography (HP–SEC) was
utilized for IgG-sample fractionation and independent quantifi-
cation. Finally, PLSR-based models were formulated between
HP-SEC measurements and fluorescence spectra collected for
the corresponding samples. These models can be used as a
soft sensor for predicting monomer concentration and infer-
ring conformational changes from measured fluorescence
spectra.

Materials and Methods

Sample preparation

ChromPure Human IgG (Cedarlane, ON) with a concen-
tration of �11.3 mg/mL in 0.01M phosphate buffer saline
(PBS) stored at pH 7.6 was utilized for the experiments. To
study the impact of temperature, pH, and protein concentra-
tion on the aggregation, an asymmetric central composite
design (CCD) with 4 center points was implemented (Table
1). Because of the sample limitations and a need for a cer-
tain combination of conditions for soft sensor development
purposes, it was not possible to perform symmetric CCD.
Sample dilution was performed using HyClone 0.01M PBS
(Fisher Scientific, ON) at pH 7. For the experiments per-
formed at different pH levels, the pH of the buffer was
adjusted using HCl (1M) and NaOH (1M) prior to sample
dilution. Samples were thermally stressed at different tem-
peratures in a water bath for 20, 40, and 60 min then cooled
for 20 min at room temperature in a water bath before being
centrifuged at 400g for 5 min. The resulting supernatant was
decanted and used for the fluorescence and HP-SEC meas-
urements. For the purpose of developing a soft sensor for in
situ monitoring of protein aggregation, additional experi-
ments were carried out (Table 1).

High-pressure size exclusion chromatography

The resulting supernatant was analyzed by HP-SEC on an
Agilent 1200 chromatography system (Palo Alto, CA)
equipped with a UV detector. Two-hundred microliter of sam-
ple were injected into a Speax Zenix-C SEC-300 (Sepax
Technologies, Newark, DE) column with a flow rate of 1 mL/

min for 20 min with a mobile phase of 1.5M PBS at pH 7.4

and detected at 280 nm. Measurements were carried out in

duplicate. A calibration curve was prepared with various con-

centrations of pure IgG1 ranging from 1.5 to 0.01 mg/mL.

Protein concentration calculations were based on the area

under the curve (AUC) pertinent to the peak of the mono-

meric form of the IgG1. To avoid errors related to elution

caused by column saturation or attachment of highly hydro-

phobic molecules, a new calibration curve was generated after

column regeneration on a regular basis. The peaks were attrib-

uted to different oligomeric structures based on the relative

residence time as compared to the information reported in the

Ref.3. The aggregation percentage was defined as the differ-

ence between the concentration of the protein in monomeric

form before and after being subjected to the imposed stresses.

This difference was then normalized with respect to the initial

monomer concentration of unstressed sample. As such, the

calculated aggregation percentage is equivalent to a measure

of product loss.

Fluorescence spectroscopy

Multiwavelength fluorescence spectra of the supernatant

were acquired at room temperature utilizing a Cary Eclipse

spectrofluorometer (Palo Alto, CA) equipped with a Peltier

multicell holder in 700 ml far UV quartz cells with path

length of 10 mm (Mandel Scientific, ON). The measurements

were collected over an excitation range from 260 to 350 nm

at 5 nm increments and emission range from 280 to 450 nm

with 1 nm increments. The photomultiplier tube (PMT) volt-

age of 600 V, slit width (SW) for excitation and emission of

5 nm, and scanning rate of 600 nm/min were set for signal

acquisition. The measured fluorescence spectra was arranged

in a form of a matrix (19 excitation 3 121 emission) known

in the literature as an excitation emission matrix (EEM).

Table 1. Summary of Experimental Design

Experiment
No.

Temperature
(8C) pH

Concentration
(mg/mL)

1 70 5.1 0.2
2 70 8.1 0.2
3 70 8.1 1
4 70 5.1 1
5 50 5.1 0.2
6 50 8.1 0.2
7 50 8.1 1
8 50 5.1 1
9 80 7 0.5
10 40 7 0.5
11 60 9.1 0.5
12 60 3.1 0.5
13 60 7 1.5
14 60 7 0.1
15-18 60 7 0.5
19 60 7 1
20 60 7 0.2
21 60 8.1 0.5
22 60 5.1 0.5
23 60 5.1 0.2
24 60 5.1 1
25 60 3.1 0.2
26 60 3.1 1
27 60 9.1 0.2
28 70 7 0.5
29 70 7 0.2

Experiment 1–18: Asymmetric central composite design (CCD) with
four center points and experiment 19–29: Complimentary set of
experiments.
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Since large insoluble aggregates were eliminated by centrifu-

gation and the concentration of Mab was low, fluorescence

quenching was not a concern.

Chemometric analysis

With the goal of developing empirical models (soft sen-

sors) based on multiwavelength fluorescence spectra for

quality control and quantitative monitoring, the PLSR18,20

technique was applied. The input data matrix (X) is formed

by individual re-arrangement of EEMs of samples into row

vectors followed by their row-wise attachment. Sample

duplicates were included in the X matrix separately. The for-

mation of the response matrices (Ys) and the preprocessing

methods for each soft sensor is explained separately in the

corresponding sections. The optimal number of latent varia-

bles (LVs) is obtained by minimizing the root mean square

error of cross validation (RMSE-CV) to avoid model over-

fitting. In the current study, a random subset routine with 20

iterations was carried for cross-validation (CV). Chemomet-

ric analyses were performed utilizing the PLS-Toolbox 7.0.3

(Eigenvector Research, Manson, WA) running in the MAT-

LAB 8.0.0 (Mathworks, Natick, MA) platform.

Results and Discussion

Impact of stress factors

To better understand the impact of stress factors and inves-
tigate diverse aggregation patterns, an asymmetric central
composite design with a complementary set of experiments
(to encompass a wide range of stress factors) was conducted.
Additionally, the relevance of the tryptophan fluorescence-
spectra of the samples for tracking Mab conformational
changes was thoroughly studied. It is worth noting that the
samples that were not subjected to stress factors contained
less than 5% dimers, which are neglected in the current study.

Temperature plays a crucial role to evoke aggregation.
Higher temperatures contribute to the protein conformational
changes, exposure of hydrophobic regions of the polypeptide
chain to the external medium, and consequently to the for-
mation of aggregates.4,5

Figure 1a exhibits the changes in aggregation percentage
of IgG samples (pH 5 7 and concentration 5 0.5 mg/mL)
with time at different temperatures. From the results it can
be observed that the propensity for aggregation is propor-
tional to the temperature and occurs when samples are
heated above a minimum temperature. For instance, over

Figure 1. Temporal evolvement of the degree of aggregation under stressed conditions: (a) For samples with 0.5 mg/mL initial IgG at
pH 5 7 under different temperatures; (b) For samples with 0.5 mg/mL initial IgG stressed at 608C under different pHs; (c)
For samples with different initial IgG concentrations stressed at 608C and pH 5 7; (d) For samples with different initial IgG
concentrations stressed at 608C and pH 5 5.1.
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20% of the IgG monomer is aggregated after 20 min of heat

treatment at 608C, while at 408C the level of aggregation is

negligible (chromatogram for the unstressed sample was

identical to that of the sample exposed to 408C). Higher tem-

peratures (70 and 808C) resulted in a significant loss of the

monomer structure as well as induced formation of large

insoluble oligomers that precipitate as supported by the chro-

matograms in Figure 2a for samples subjected to these

higher temperatures (pH 5 7 and concentration 5 0.5 mg/

mL) for 20 min. This phenomenon is attributed to the forma-

tion of greater levels of unfolded IgG at higher tempera-

tures.7 Regardless of the initial IgG concentration and pH,

similar trends were observed for temperature-induced aggre-

gation (results not shown), which is in accordance with the

Ref. 5,7. The typical melting point of IgG is reported to be

above 708C supporting these findings.21

The impact of pH on a protein is dependent on the amino

acid composition as constituent amino acids become proto-

nated or deprotonated. This changes the conformational sta-

bility and the free energy of unfolding.5,6 On the basis of the

experimental results obtained at different pHs, it was con-

cluded that samples with a pH close to neutral levels had a

very small tendency to aggregate while deviations from pH

7 resulted in an increase in the rate of aggregation (Figure

1b). Figure 2b is a comparison between the heat-treated sam-

ples, at 608C, 0.5 mg/mL after 20 min, at different pHs. It

can be seen that under acidic conditions (pH 5 3.1) the rate

of loss of monomer is significantly higher. The substantial

increase in the intensity of tryptophan fluorescence is in

agreement with this conclusion. Additionally, it was

observed that at 708C and an initial IgG concentration of

1 mg/mL, the sample with pH 5.1 experienced more pro-

nounced loss of monomer and formation of insoluble oligo-

meric structures over time, in contrast with samples

subjected to pH 8.1 that exhibited a higher tendency of

forming trimer and tetramers (Figures 2c,d).

Although protein aggregation is generally found to increase

with protein concentration,4,6 the pattern of protein aggrega-

tion is found to be inconsistent (for the concentration range of

this study) under different pH conditions. For instance, at pH

7 a sample with concentration of 1.5 mg/mL experienced the

greatest loss of monomers and at the same time formed more

trimers/tetramers after 20 and 40 min exposures to 608C (Fig-

ure 1c), while at pH 5.1 the aggregation percentage of the

sample with initial concentration of 0.2 mg/mL outpaced that

of 0.5 and 1 mg/mL samples (Figure 1d). In spite of the high

level of aggregation observed under acidic conditions

(pH 5 3.1), the sample with an initial concentration of 1 mg/

mL (at 608C after 20 min) aggregated 10% and 7% more than

samples with initial IgG of 0.5 and 0.2 mg/mL respectively

(results not shown).

Figure 3a provides the tryptophan fluorescence (Excitation 5

280 nm) of IgG samples (pH 5 7 concentration 5 0.5 mg/mL)

stressed at 608C over a 60 min time span. An increase in the

tryptophan intensity over time and a red-shift of peak maxima

are indicative of protein unfolding and the formation of oligo-

meric structures that are observed in the HP-SEC results for

the same samples during the course of heat induced

Figure 2. Chromatograms of samples obtained from SEC: (a) For samples with 0.5 mg/mL initial IgG at pH 5 7 after 20 min of treat-
ment under different temperatures; (b) For samples with 0.5 mg/mL initial IgG stressed at 608C for 20 min under different
pHs; (c) For samples with 1 mg/mL initial IgG and pH 5 5.1 stressed at 708C at different sampling time; (d) For samples
with 1 mg/mL initial IgG and pH 5 8.1 stressed at 708C at different sampling time.
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aggregation. A pronounced change in the tryptophan fluores-
cence between 20 and 40 min and a subtle change occurring
between 40 and 60 min are in agreement with the results in
Figure 1a. Rayleigh light scattering is an incident light, occur-
ring at equal excitation and emission wavelengths and it is gen-
erally attributed to the presence of suspended particles and their
size.11 The scattering intensity
(Excitation 5 Emission 5 305 nm) for the aforementioned sam-
ples continually increases (Figure 3b) over time and is attrib-
uted to the formation of larger oligomers in the samples in
agreement with the protein fractionation results (results not
shown). The rationale behind selecting the scattering at an
Excitation 5 Emission 5 305 nm is that at lower wavelengths,
because of high absorbance of energy by tryptophan, a low sig-
nal to noise ratio was observed for scattering. At higher wave-
lengths, a lack of energy absorption by the fluorophores leads
to higher energy of scattering that saturates the detector thus
causing a loss of sensitivity. At higher temperatures (808C) the
overall protein concentration decreases because of the precipita-
tion of large oligomers. This is evident in the sudden
reduction in the tryptophan fluorescence intensity and a higher
red-shift in the peak maxima of samples (pH 5 7
concentration 5 0.5 mg/mL) after 20 min of heat treatment
(Figure 3c) as well as the scattering levels (Figure 3b), which
agrees with the HP-SEC results in Figure 2a. Abbas et al.9

argued that the second derivative of the normalized tryptophan
signal can be implemented to track induced conformational

changes. Figure 3d provides the second derivative (calculated
using the Savitzky–Golay algorithm) of the normalized emis-
sion signal obtained at an excitation of 280 nm for a sample
with 0.5 mg/mL initial IgG after 20 min of heat treatment at
608C under various pHs. A reduction in value and a shift to
higher wavelengths for the peak (minima) at �327 nm is an
indicator of the loss of the native structure of IgG with larger
disruption occurring for the samples exposed to pH 5 3. From
Figure 3d a similarity can be found between the aggregation
pattern of samples at pH 5 8 and 9 and pH 5 5 and 7, as their
minima approach each other, which is in agreement with previ-
ous observations inferred from Figures 1b and 2b and agrees
with the findings of Abbas et al.9 The subtle changes in the
intrinsic fluorescence-spectra of stressed samples reinforce the
capability of fluorescence spectroscopy to serve as a tool for
quantitative and qualitative monitoring of aggregation.

Response surface model

An RSM was developed to describe the impact of stress
factors on the percentage of aggregation. The experimental
error is the total error calculated from measurements of
monomer concentration with SEC for replicated samples of
the center point and is estimated to be �12%. The response
variable was defined as the percentage of aggregation after
20 min. For better accuracy, a logarithmic transformation of
the response variable was used for model calibration. Since

Figure 3. Fluorescence signal of stressed samples: (a) Emission spectra (at excitation 280 nm) for samples with 0.5 mg/mL initial IgG
and pH 5 7 stressed at 608C at different sampling time; (b) Intensity of scattering-maxima (at excitation 305 nm) for sam-
ples with 0.5 mg/mL initial IgG and pH 5 7 stressed at different temperatures over time; (c) Emission spectra (at excitation
280 nm) for samples with 0.5 mg/mL initial IgG and pH 5 7 stressed after 20 min at different temperatures; (d) Second
derivative of emission spectra (at excitation 280 nm) for samples with 0.5 mg/mL initial IgG after 20 min treatment at 608C
at different pHs.
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the aggregation was bounded to 0% and 100%, the model

output was forced to be equal to 0 for prediction values

below 0 and 100 for prediction values above 100. Analysis

of variance (ANOVA) along with a F-test was performed for

various model structures to evaluate the lack of fit for each

proposed model. Consequently, a function containing quad-

ratic, interactions, and linear terms was found to be the best

fit to the experiments. ANOVA with t-test was then per-

formed to determine significant effects and fine-tune the final

model.

Table 2 summarizes the ANOVA of final RSM including

only the significant effects. Temperature was found to have

the most profound impact on aggregation. It was also noted

that the impact of pH and concentration is slightly dependent

on the temperature, while no considerable interaction was

observed between pH and protein concentration. Addition-

ally, a curvature effect was noted for all three effects which

were evident from the conclusion drawn previously. Figure 4

provides the contour plots of aggregation percentage after 20

min of treatment, obtained from the surface model, with

respect to two factors while the third is kept constant. These

contour plots can be employed to evaluate the operating

regions where the propensity of aggregation formation is

lower. For example, it was found that the tendency of aggre-

gation at pH values ranging from 6 to 7 is comparatively

lower than pH levels above or below this range at any tem-

perature (Figure 4a) and monomer concentration (Figure 4c)

investigated. At a protein concentration of 0.5 mg/mL, the

impact of basic pH levels on aggregation is more substantial

at higher temperatures, as compared to lower ones (Figure

4a). A similar behavior was observed for other concentra-

tions. Regardless of the sample pH, the rate of aggregation

at different concentrations was found to be dependent on

temperature (Figure 4b for pH 5 7). To improve the extrapo-

lation accuracy of the surface model at high temperatures

and monomer concentrations, more data were acquired for

further calibration.

Soft sensor for quantitative monitoring

An empirical model (soft sensor) was developed based on
multi-wavelength fluorescence spectra and utilizing the
PLSR method, in order to predict the concentration of the
monomeric IgG of pure (unstressed) and stressed samples.
This soft sensor can be used at situ to track desirable prod-
uct concentrations as well as monitoring loss of monomers.
Since the aim of this soft sensor is to estimate the mono-
meric content, only the part of spectra pertinent to the tryp-
tophan peak was implemented as input to the model. Thus,
the scattering region, which is believed to provide informa-
tion about the suspended particles and is probably more rele-
vant to oligomeric structures, was eliminated from the
spectra using an in-house developed MATLAB program.
The concentrations of the IgG in monomeric structure
obtained via protein fractionation (as explained in section
“High-pressure size exclusion chromatography”) were
appended together to form the output matrix (Y). To ensure
the model-prediction accuracy experiments 2, 13, 17, 20, 23,
and 25 (Table 1) were randomly selected and eliminated
from the calibration set. These experiments were then used
to test the prediction accuracy of the resulting model. Five
LVs were found to minimize the RMSE-CV resulting in a
minimal error of 0.053 mg/mL of monomer concentration,
which is equivalent to �16% of the average monomer-IgG
concentration; in accordance with 13% SEC measurement
error. The resulting model was capable of capturing roughly
100% of variation in the input (X) and simultaneously
explains 97.1% of the output (Y) for the calibration set
which is deemed highly reasonable considering the R2

CV

equal to 96.9%. The resulting model predicted the test set
with a precision of R2

P = 97.6% that verifies the accuracy of
the cross-validation procedure necessary to avoid model
over-fitting. The model precision is depicted in Figure 5a
where the calibration and validation sets are aligned closely
to a 458 line with the residuals being approximately normally
distributed (Figure 5a inset). The first latent variable of the
PLSR model accounts for 98% and 57% of variance of the
input and output data sets, respectively. Although the second
LV only contributes to 1% of variation in the X matrix, it
can describe roughly 34% of the response matrix Y. Figure
5b shows the scores of LV2 versus LV1 with the 95% confi-
dence region. As shown in Figure 5b, the scores on the LV1
are discriminated into four regions that correspond to a dif-
ferent range of monomer concentrations. This correlation
becomes more apparent in Figure 5c that shows the mono-
mer concentration versus LV1 scores. In spite of the group

Figure 4. Contour plots of fitted surface model: (a) Temperature versus pH at initial IgG of 0.5 mg/mL; (b) Temperature versus
concentration at pH 5 7; (c) Concentration versus pH at 608C.

Table 2. Analysis of Variance (ANOVA) of the Final Response

Surface Model (RSM) After Excluding the Insignificant Factors

Degree of
Freedom

(df)

Sum of
Square

(SS)

Mean
Square
(MS) FObserved FActual

SSE 10 394.72 39.47
SSLF 7 373.65 53.38 7.596 8.89
SSPE 3 21.08 7.02
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of outliers with extremely low LV2-scores (Figures 5b,c), a
correlation is observed between monomer concentration and
the scores on the LV1. The outliers observed in Figure 5b
have very low leverage; hence, imposing a minimal effect
on the model accuracy. Figure 5d shows the trajectories of
LV2-scores for three different experiments with an initial
IgG concentration of 0.5 mg/mL. For experiments performed
at 608C at pH 7 and 9.1, the LV2-scores are constantly
decreasing, which is in agreement with the trend of forma-
tion of oligomers noted earlier in section “Impact of stress
factors”. On the other hand, for the experiment performed at
708C and pH 7, an increase in LV2-scores is observed after
reaching a minimum that can be explained by the formation
of precipitates that were eliminated by the centrifugation
step performed before the measurement.

The physical relevance of the latent variables can be
explained by investigating the matrix of loadings. By perform-
ing an inverse of the matrix transformation explained in sec-
tion “Chemometric analysis”, the loadings pertinent to each

latent variable were converted to the form of an EEM. Figures

5e,f are the contour plots of the first and second LVs. The

first loading (Figure 5e) is correlated to the region correspond-

ing to tryptophan with an emission peak at �330 nm, which

resembles the tryptophan buried in the hydrophobic core in

the native protein and in agreement with previous observation

by Elshereef at al.10 This conclusion reinforces the stronger

relevance of LV1 to the monomeric-IgG concentration. The

LV2 encompasses regions of spectra attributed to tryptophan

in the native (the peak at lower wavelengths) and in the non-

native (peak at higher wavelengths) protein structure14 with

positive and negative correlations, respectively (Figure 5f).

When tryptophan is further buried within the aggregates, the

peak pertinent to non-native tryptophan increases. Thus, a

reduction is observed in the scores of LV2. On the other

hand, when aggregates are large enough to precipitate or are

separated through centrifugation, the peak pertinent to non-

native tryptophan decreases and consequently an increase is

observed in the scores of LV2. However, the magnitude of

Figure 5. Results of the soft sensor for quantitative analysis: (a) Model predictions versus measured values for calibration and test set
and normal percentiles of residuals (inset); (b) Scores of LV2 versus LV1; (c) Measured values versus scores on LV1; (d)
Scores on LV2 for three different experiments over time; (e) Contour plot of the first loading; (f) Contour plot of second
loading.
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scores of LV2 depends on the amount of monomer and type

of aggregates in the sample and cannot be directly correlated

to the aggregation percentage.

Soft sensor for quality control

The presence of oligomeric structures of Mab substantially

diminishes the quality of the final product and can have pro-

found negative impacts in the patient.4,5,7,8 It imposes a need

for a noninvasive approach for rapid quality control of final

product. Fluorescence spectra, in conjunction with PLSR,

were implemented to develop an empirical model capable of

at situ classification of the final product into classes with dif-

ferent degrees of aggregation. To calibrate the model, sam-

ples were grouped into four classes that were defined based

on the ratio of the percentage of the area under the SEC

chromatograms’ peak pertinent to tri/tetramers and that of

the monomer IgG. For the purpose of model calibration,

classes were assigned corresponding integer values: 0, 1, 2,

and 3. A possible description of the classes corresponding to

each one of these integer values could be as follow: (1) no

to very small aggregates-acceptable sample; (2) mostly

monomer with few aggregates-acceptable sample with cau-

tion; (3) equal amount of aggregates and monomers-require

further evaluation; and (4) over half of the sample are

aggregates-rejected sample. Clearly, the description of the

classes is subjective and it could be modified if additional

information such as the therapeutic efficacy of the Mab were

available from other sources. The integer values describing

the classes were used to form the response matrix Y that

was regressed with respect to the input matrix containing the

measured fluorescence spectra of the samples. As mentioned

before, the scattering region of the spectra is attributed to

larger particles and can provide information about the pres-

ence of oligomeric structures. Thus, for the formulation of

this soft sensor the complete fluorescence spectra, encom-

passing both the scattering regions and region attributed to

tryptophan, were implemented as the input matrix (X). To

validate the model precision, randomly selected experiments

were excluded from the calibration step. The cross validation

procedure revealed that 6 LVs minimizes the RMSE-CV and

generates a model capable of capturing 99.99% of input data

set and explains 92.12% of output data with R2
CV being equal

to 90.1%. The subsequent model is capable of predicting the

test set with the R2
P of �79%. Figure 6a illustrates the model

predictions for the calibration set and validation set distin-

guished based on their specified class. Since the predictions

of the model are continuous variables, i.e., continuous values

between 0 and 3, thresholds were selected as boundaries of

classes in order to assign to each predicted value one of the

integer values between 0 and 3. It can be concluded from

the Figure 6a that the model properly discriminates between

classes with few samples being misclassified. Table 3 sum-

marizes the confusion table for the calibration and validation

sets where this table indicated the percentages of correct and

incorrect detections obtained for each data set under study.

From this table, the maximum probability for a true positive

prediction (sensitivity) is observed for classes 0 and 3 for

both calibration and validation sets, which supports the fact

that the definite acceptance or rejection of the final product

can be done with a high degree of certainty. The confusion

table also indicates that the probability of true negative

(selectivity) of different classes for calibration and validation

sets are over 90%, except for class 1 for the validation set

which is roughly 80%. Despite the presence of some mis-

classified samples, the model demonstrates high selectivity

Figure 6. Results of the soft sensor for qualitative analysis: (a) Model classification of different samples (initial classes specified by
symbols and colors); (b) Scores of LV2 versus LV1; (c) Contour plot of first loading.
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and sensitivity which strengthens the potential of this model

for quality control. The first LV plays the most crucial role

accounting for �84% of variation in X and predicting 90%

of the response Y. From Figure 6b, the scores of LV2 versus

LV1, it is observed that there is a strong correlation between

the LV1 scores and classes. The physical relevance of LV1

is demonstrated by the contour plot of its loading, Figure 6c,

which is dominated by the regions of spectra pertinent to

scattering and, to a lesser degree, tryptophan-related

emission.

Conclusion

On the basis of a comparison of HP-SEC and multi-

wavelength fluorescence data it is demonstrated that intrinsic

multi-wavelength fluorescence spectroscopy can be utilized

for at situ quality control and quantitative monitoring of pro-

tein aggregation for different process conditions that typi-

cally occur during the downstream purification of

monoclonal antibodies. The outlet of a bioreactor feed to

downstream processing units typically consists of a complex

mixture of a variety of proteins and nutrients that may affect

the fluorescence signal and may complicate soft sensor

development. In view of the complexity that may arise for

samples taken directly from a bioreactor, as a preliminary

evaluation of multi-wavelength fluorescence as a tool for at
situ monitoring, the current study only focuses on single pro-

tein samples aggregated by various stress factors. As such,

soft-sensors would have to be developed on an ad hoc basis

for each particular process. To simulate the diverse process-

ing conditions during downstream processing, IgG samples

were stressed under various conditions that included concen-

tration, pH, and temperature that resulted in different aggre-

gation patterns. The impact of these factors on the

fluorescence signal was investigated and compared with the

results obtained from HP-SEC-based sizing. To systemati-

cally comprehend the influence of these operating factors

individually or in conjugation with each other, on the degree

of aggregation, a nonsymmetrical CCD was performed. A

surface response model was fitted to the data, which helped

to identify the operating regions where the propensity to

aggregation was lower. An empirical predictive model was

then established providing fast and accurate predictions of

the monomer-IgG concentration in the sample. Finally, a

model was developed using PLSR that successfully discrimi-

nated the samples into different classes corresponding to dif-

ferent degrees of aggregation. In view of the adverse impact

of aggregation on therapeutic efficacy of antibodies, such a

PLSR based model could be extremely beneficial for future

online quality control. The feasibility of a fluorescence-based

soft sensor for predicting both monomer concentration and

aggregation patterns for a diverse set of operating conditions

was demonstrated. The proposed approach offers potential

for at situ monitoring of downstream processes for monoclo-

nal antibody production. Future work will consider the

applicability of the proposed soft sensor to samples involving

mixtures of different proteins rather than single protein sam-

ples, as considered in the current work.
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